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to use the partial differential and integral techniques,
each in its appropriate region, to solve problems that
could be intractable by either one individually.
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Short Papers

A Method for Computing Edge Capacitance of Finite
and Semi-Infinite Microstrip Lines

T. ITOH, R. MITTRA, axp R. D. WARD

Abstract—This short paper describes a method for computing the
edge capacitance of finite or semi-infinite sections of microstrip trans-
mission lines. The approach is based on Galerkin’s method applied
in the Fourier-transform domain. It is mathematically simple and
requires the inversion of rather small-size matrices.

INTRODUCTION

In this short paper, a new method is developed for calculating the
fringe (excess) capacitance due to an abrupt truncation of a uniform
microstrip line. In contrast to the conventional matrix formulation
in the space domain, the method to be presented here is based upon
an application of Galerkin’s method in the spectral or Fourier-trans-
form domain. The spectral-domain approach has been successfully
applied to a number of other problems [1]-[3]. [t is particularly
suitable for handling open-region problems of the type considered in
this short paper.
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FORMULATION AND METHOD OF SOLUTION

In the TEM approximation, it is assumed that the discontinuity
capacitance may be computed from the knowledge of the field solu-
tion derived in the static limit. This is done by first solving Poisson’s
equation for the potential function ¢ for the geometry under con-
sideration. (The geometry is shown in Fig. 1.) This, in turn, requires
the solution of the equation

1
Vep(x, y,2) = — ;p(x, 2)5(y)

olx,2) =0, |x| >W/2, |3z] >1/2 (1)
where ¢, is the free-space permittivity, 8(y) is the delta function, and
p(x, 2) is the charge distribution on the strip. The strip is assumed to
have infinitesimal thickness and to be perfectly conducting. The
ground plane and the dielectric substrate are also assumed to be loss-
less. Next, we introduce the two-dimensional Fourier transform of

the poiential ¢ via

Fla, 3,8 = f f é(x, y, 2) exp jlax + Bz) dxds. (2)
Taking the transform of (1), we obtain
3 . 1
=~ @+ |6l 3,0 = — e, H0) @
y €

where jj is the transform of charge distribution defined by

112 Wiz
wo) = f  p(an9) exp jlax + ) duds. @

1/2



848

00

| 1 Illlllll 1 I N T I

A I 10
b/W

Capacitance of a square section of microstrip.

Fig. 1.

We assume that the potentials of the strip and the ground plane are
maintained at 1 and 0 V, respectively.
The boundary and continuity conditions are written as

1) Pla, —5,8) =0
2) ¢la,y,8) —0 asy—+
3) @la, 0+, 8) = ¢la, 0—,8)

5 ag 1
% (e, 0, 8) — era—d)(a, 0—,8) = — —ple, B).
y €

)

ay
The appropriate form of the solution of (3) is
- A(a, B) sinhv/a? 4 B2 y, —b<y<0
$e, 0 = | -~ ®)
B(ayB)exp{'—\/‘)‘z"l‘B y}’ y>0

where 4 (e, 8) and B{a, 8) are unknown coeffictents. Note that the
choice of the representation in (5) automatically satisfies conditions
1) and 2). Next we substitute (5) into conditions 3) and 4), and elimi-
nate A{a, 8) and B(a, B8) to express the solution for the potential on
the strip in the form

Gla, B)p(a, B) = $i(e, 0, 8) + (e, 0, ) ©)
where
é; = ffon Stripda(x, 0, z) exp jlax + B2) dxdz = aiB sin g sin %l (72)
q;o = ffoutslde of qtnpqs(xy 0, Z) €Xp j(ax + ,BZ) dxdz (7b)
1
Gla, B8) = . (7¢)

ev/al -+ B |1 + e coth v/a? T B2 b]

Note that G is the transform of Green’s function, and that the al-
gebraic product in the left-hand side of (6) corresponds to the surface
convolution integral appearing in the space-domain analysis. This
feature is very important and useful in the actual numerical calcula-
tion because the computation of the surface convolution integral is a
time-consuming operation.

As a first step toward solving (6), we expand the unknown charge
distribution in terms of a set of known basis functions

N
Ple, B) = ; dnnle, B). ®

It may be noted that the basis functions in the transform domain ¢»
are the Fourier transforms of functions ¢, that have a finite support
in the space domain.

The next step for deriving a matrix equation for the unknown co-
efficients d, is to take the inner product of (6) with one of the basis
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functions ¢.. This gives

iKmdﬁfm, m=1,2-,N ©)
where
K= [ [ e, 06 Ofp) dads  (10)
= [ [ ot 99e,0,6) dads
= (21—7)2 f_Z: f_::;,,.(x, 2) duds. an

The unknown potential ¢, was eliminated using Parseval’s relation

I [ ot 0.9) dods= G) T

“FT-1, | dadz = 0

because the inverse transforms FT-! of {,, and @, are nonzero only in
complementary regions. Once (9) is solved for d,, the total capaci-
tance for the strip may be computed from the expression

C= f_“zf lep(x, z) dxdz = (Zw):g dnfa.

i2v Wiz

(12)

I't should be pointed out that the capacitance obtained from the use
of (12) is always smaller than the correct value. This follows from the
fact that Galerkin's method-is equivalent to the variational approxi-
mation.

NuMERICAL PROCEDURE AND RESULTS

The choice of the basis functions is rather arbitrary as long as
they satisfy the required condition that they are zero in the appropri-
ate range. Experience with two-dimensional problems has shown that
the polynominals of |x| are very suitable for the uniform line case
[1], {2]. This prompts us to choose the following functions for the
three-dimensional problem at hand:

| «[=1] z]71,  on thestrip
n=1k=1,=0,n=20k=2,7=1,---
0, otherwise.

g‘n(xy g) = (13)

The transforms of the basis functions may be obtained by using (2).
The accuracy of the results improves with the use of more than one
basis function, although the one-term approximation is used here.
Numerical experiments show, however, that the use of two terms im-
proves the accuracy only slightly, and the increase in computational
labor does not usually justify this effort. It will be seen shortly that
the calculations based on the one-term approximation compare very
favorably with those reported elsewhere using other techniques.

Fig. 1 shows the computed values of capacitance for a square sec-
tion of microstrip line {{=W) for dielectric constants of 1 and 9.6.
The plotted values of capacitance are normalized with respect to
eWW?/b, which is the value of the capacitance of a parallel plate struc-
ture with e =er€,. As expected, the normalized capacitance approaches
unity as b/W becomes small. The results in Fig. 1 are indistinguish-
able from those obtained by Farrar and Adams [4], who used the
point-matching technique, and Reitan [5] who employed the method
of subareas for e, =1.0.

The fringing capacitance at the end of the open-circuited micro-
strip line may be defined as

Cex = llim icm —1c.] (19)
where C(J) is the total capacitance of the section of length ! and width
W, C, is the line capacitance per unit length of a uniform line of the
same width, and the factor ¥ accounts for the discontinuities at both
ends of the strip. It should be noted that Cx is not variational, al-
though the expression for C(/) given earlier is stationary. In the calcu-
lation, I is not infinite, but some finitely large value beyond which the
change of C(/)—1C, is negligible.

The fringe capacitance is sometimes expressed in terms of a
hypothetical extension of the microstrip line by a small amount 8/
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Fig. 2.

[6], [7]. This quantity was calculated by using the expressions for
Cex given earlier, and the results obtained are shown in Fig. 2. The
same quantity has been computed by James and Tse [7] by using an
alternative approach, and their results are also included in Fig. 2 for
ease of comparison. It is evident that the numerical results obtained
in this short paper compare favorably with Farrar and Adams, as well
as others.

It may be useful to quote some typical computation time for cal-
culating C(}) by (12). Typical time of the CDC G-20 computer was
about 60 s for this calculation (execution time). The above computer
is approximately ten times slower than the IBM 360/75. To minimize
the computation time for Cex given in (14), the choice of ! is impor-
tant. A numerical experiment shows that, if l;]O W, C() increases
linearly with .. Hence the limiting process can be omitted for this
choice of I. Furthermore, since the computation of C, requires less
than 5 s (execution time), the computation time of Ce is also about
60 s.

In conclusion, the method described in this short paper has many
advantages, one of which is its numerical efficiency. Another feature
is that it is quite general, since many other types of junctions and
finite structures can be solved by the present method, either in its
present form or with some modifications. Some examples of such
structures are gaps in the uniform strip, T junction, etc., that are
currently under investigation.

Finally, it should be mentioned that Maeda [8] has recently re-
ported a method for analyzing the gap structure in the microstrip
line. The approach outlined in this short paper is believed to be
numerically more efficient, since the expression for Green’s function
in the transform domain is a closed form in contrast to a slowly con-
verging series in the space domain.
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A Quasi-Dynamic Method of Solution of a Class of
Waveguide Discontinuity Problems

LEONARD LEWIN axp JAMES P. MONTGOMERY

Absfract—1It is shown that, if expansion terms of all the modes
appearing in the Green’s function for the problem are retained, the
singular integral equation method can be made to apply by generating
a differential equation for this integral. The solution of the differen-
tial equation is straightforward, and the inversion of the resulting
integral equation then follows standard methods. The process is
applied in detail to the case of the capacitive diaphragm, and the
results compared to the quasi-static method with correction terms.
The results are close for small guide widths, but the present method
should give superior results if the guide width permits some over-
moding.
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