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to use the partial differential and integral techniques,

each in its appropriate region, to solve problems that

could be intractable by either one individually.
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Short Papers

A Method for Computing Edge Capacitance of Finite

and Semi-Infinite Microstrip Lines

T. ITOH, R. MITTRA, AND R. D. WARD

Abstract—This short paper describes a method for computing the
edge capacitance of finite or semi-infinite sections of micro strip trans-

mission limes. The approach is based on Galerkln’s method applied

in the Fourier-transform domain. It is mathematically simple and
requires the inversion of rather small-size matrices.

INTRODUCTION

In this short paper, a new method is developed for calculating the
fringe (excess) capacitance due to an abrupt truncation of a uniform

microstrip line. 1 n contrast to the conventional matrix formulation

in the space domain, the method to be presented here is based upon

an application of Galerkin’s method in the spectral or Fourier-trans-

form domain. The spectral-domain approach has been successfully

applied to a number of other problems [1 ]– [3 ]. It is particularly

suitable for handling open-region problems of the type considered in

thk short paper.
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FORMULATION AND METHOD OF SOLUTION

In the TEM approximation, it is assumed that the discontinuity

capacit ante may be computed from the knowledge of the field solu-
tion derived in the static limit. This is done by first solving Poisson’s
equation for the potential function @ for the geometry under con-
siderate ion. (The geometry is shown in Fig. 1.) This, in turn, requires

the sol ution of the equation

V’+(2,y, z) = – ~~ P(X, Z)r$(y)

.&c,z)=o, Ixl >w/2, 1,1 >1/2 (1)

where C. is the free-space permittivity, 3(y) is the delta function, and
p (x, z) is the charge distribution on the strip. The strip is assumed to
have i nftnitesimal thickness and to be perfectly conducting. The

ground plane and the dielectric substrate are also assumed to be loss-

less. Next, we introduce the two-dimensional Fourier transform of

the pol ential @ via

~(~, y, p) = J” J “d(~,Y,Z)expj(a$ + Bz) d$dz. (2)
-. —.

Taking the transform of (l), we obtain

[
al

1–(a’+/3’)CfkY,y,f?)=–+@(a,Low~
where P is the transform of charge distribution defined by

(3)

(4)
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Fig. 1. Capacitance of a square section of microstrip.

We assume that the potentials of the strip and the ground plane are
maintained at 1 and OV, respectively.

The boundary and continuity conditions are written as

1) @(a, –b, B) =0

2) $(a, y, @)-+0 asy++~

3) I$(CY,0+,6 )=4(CY,0-, B)

4) ‘:(a, o+, P)–erd:(a, o–, B)= –+/%6).

Theappropriate form of the solution of (3)is

{

A(a, p)sinh<az +~z y,
t(a, Y,i3) = B(a, @)exp{–#a2+62y}~ –b<y<o (5)

y>o

where A(a, O) and B(a, /3) are unknown coefficients. Note that the
choice of the representation in (5) automatically satisfies conditions
1) and 2). Next we substitute (5) into conditions 3) and 4), and elimi-

nate A(a, B) and B(a, b) to express the solution for the potential on

the strip in the form

G(a, B)p(a, (3) = @,(a, 0, B) + ~.(a, 0, P) (6)

where

c$t = ~~on ,t,iPd@, 0, Z) exp~(a~ + 6z) d~z = $ sin $ sin ~ (7a)

‘0= JJoutilde cd.,7,.
@(%,O, z) exp ~(ax + Sz) dxdz (7b)

1

‘(a’ 6) = ~<w [1 +., coth tic-i’ + B’d “ (7C)

Note that G is the transform of Green’s function, and that the al-

gebraic product intheleft-hand side of (6) corresponds to the surface
convolution integral appearing in the space-domain analysis. This
feature is very important and useful in the actual numerical calcula-
tion because the computation of thesurface convolution integral isa

time-consuming operation.
As a first step toward solving (6), we expand the unknown charge

distribution in terms of a set of known basis functions

Na, /3) = S dn:m(a, D). (8)
71==1

1 L may be noted that the basis functions in the transform domain ~ti

are the Fourier transforms of functions ~n that have a finite support

in the space domain.

The next step for deriving a matrix equation for the unknown co-

efficients d“ is to take the inner product of (6) with one of the basis

functions ~n. This gives

~ Kmmdn = fm, ~=~,2, . . ..N (9)
.=1

where

Km. =

fm =

——
\i!T/ J -Z/Z J –TV12”

The unknown potential ~. was eliminated using Parseval’s relation

.-

Js—m -m
?m(a,P)4.(a,0,P) dad8= (:~~_j~_~&I(*,z)

FT-l~rj.] dxdz = O

because the inverse transforms FT-l of ~~ and J,j are nonzero only in

complementary regions. Once (9) is solved for dm, the total capaci-
tance for the strip may be computed from the expression

1/2

H

w/2 ZN
c= oxp(X,z) dwi.z = 2rr dtifw.

–112 -WI%
(12)

lk=l

It should be pointed out that the capacitance obtained from the use

of (12) is always smaller than the correct value. This follows from the
fact that Galerkin’s method-is equivalent to the variational approxi-

mation.

NUMERICAL PROCEDURE AND RESULTS

The choice of the basis functions is rather arbitrary as long as

they satisfy the required condition that they are zero in the appropri-

ate range. Experience with two-dimensional problems has shown that

the polynomials of / x I are very suitable for the uniform line case

[1], [2]. This prompts us to choose the following functions for the

three-dimensional problem at hand:

1

I x [*II z if-’, on the strip

$-n(*, z) = ?z=l(k= l,j=l), r-Z=2(L?=2, j =1), . . . (13)

o, otherwise.

The transforms of the basis functions may be obtained by using (2).

The accuracy of the results improves with the use of more than one

basis function, although the one-term approximation is used here.

Numerical experiments show, however, that the use of two terms im-

proves the accuracy only slightly, and the increase in computational

labor does not usually justify this effort. It will be seen shortly that
the calculations based on the one-term approximation compare very
favorably with those reported elsewhere using other techniques.

Fig. 1 shows the computed values of capacitance for a square sec-
tion of microstrip line (1= W) for dielectric constants of 1 and 9.6.
The plotted values of capacitance are normalized with respect to
eW2/b, which is the value of the capacitance of a parallel plate struc-

ture with e = .s,Q. As expected, the normalized capacitance approaches

unity as b/W becomes small. The results in Fig. 1 are indistinguish-

able from those obtained by Farrar and Adams [4], who used the
point-matching technique, and Reitan [5] who employed the method

of subareas for e,= 1.0.
The fringing capacitance at the end of the open-circuited micro-

strip line may be defined as

c.= = ;~: +[C(Z) – lCO] (14)

where C(l) is the total capacitance of the section of length 1 and width
W, C. is the line capacitance per unit length of a uniform line of the
same width, and the factor ~ accounts for the discontinuities at both
ends of the strip. It should be noted that C&x is not variational, al-
though the expression for C(l) given earlier is stationary. In the calcu-
lation, Zis not infinite, but some finitely large value beyond which the

change of C(l) — lCO is negligible.
The fringe capacitance is sometimes expressed in terms of a

hypothetical extension of the microstrip line by a small amount 61
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Fig. 2. 13nd effect of a semi-infinite rnicrostrip line.

o

[6], [7]. This quantity was calculated by using the expressions for

C,, given earlier, and the results obtained are shown in Fig. 2. The
same quantity has been computed by James and Tse [7] by using an

alternative approach, and their results are also included in Fig. 2 for
ease of comparison. It is evident that the numerical results obtained
in this short paper compare favorably with Farrar and Adams, as well
as others.

It may be usef al to quote some typical computation time for cal-
culating C(1) by (12). Typical time of the CDC G-20 computer was
about 60 s for this calculation (execution time). The above computer
is approximately ten times slower than the IBM 360/75. To minimize

the computation time for C., given in (14), the choice of 1 is impor-

tant. A numerical experiment shows that, if J~ 10 W, C(l) increases
linearly with 1. Hence the limiting process can be omitted for this

choice of 1. Furthermore, since the computation of Co requires less

than 5 s (execution time), the computation time of C., is also about

60 S.

In conclusion, the method described in this short paper has many

advantages, one of which is its numerical efficiency. Another feature
is that it is quite general, since many other types of junctions and
finite structures can be solved by the present method, either in its

present form or with some modifications. Some examples of such
structures are gaps in the uniform strip, T junction, etc., that are

currently under investigation.
Finally, it should be mentioned that Maeda [8] has recently re-

ported a method for analyzing the gap structure in the microstrip
line. The approach outlined in this short paper is believed to be

numerically more efficient, since the expression for Green’s function

in the transform domain is a closed form in contrast to a slowly con-

vergin~ series in the space domain.
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A Quasi-Dynamic Method of Solution of a Class of

Waveguide Discontinuity Problems

LEONARD LEWIN AND JAMES P. MONTGOMERY

Absfracf-It is shown that, if expansion terms of all the modes

app-iw in the Green’s function for the problem are retained, the
singular integral equation method can be made to apply by generating
a cliff ererstial equation for this integral. The solution of the differen-
tial equation is straightforward, and the inversion of the resulting
integral equation then follows standard methods. The process is

applied in detail to the case of the capacitive diaphragm, and the
results compared to the quasi-static method with correction terms.

The results are close for small guide widths, but the present method
should give superior results if the guide width permits some over-
modkg.
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